A Just-in-Time Compiler for Csound Opcodes

Victor Lazzarini'*
Department of Music
Maynooth University, Ireland,
emailvictor.lazzariniQmu.ie

Abstract. This paper introduces the development of a just-in-time com-
piler that is ready to be deployed as a library of plugin opcodes for
Csound. It describes a module compiler, which can take C or C++ code,
compile it and make it available inside a running instance of Csound.
The set of opcodes also provide means of calling functions from within
Csound and to instantiate C++ classes and run these as opcodes within
the system. Tests have indicated that JIT-compiled C++ code can match
the efficiency of, or even outperform, existing Csound opcodes. The pa-
per is completed by a discussion of this project as part of a wider, more
ambitious, plan to provide a just-in-time compiler for user-defined op-
codes.

Keywords: Just-in-time compilers, extending Csound, LLVM

1 Introduction

Csound [1] is a mature Sound and Music computing system, developed over
more than 30 years. It is supported by world-wide user community, running in
almost every commonly available platform, from mobile and embedded devices to
supercomputers. It is capable of hard-realtime as well as offline operation, and it
is deployed as a library with a comprehensive application programming interface
(API). As a programming language, it is continuously evolving, with many new
features added in recent years, and it supports extensions through various means.
In the latest decade, it has also become extensively used in commercial software
applications, beyond its usual role in music research.

In particular, it is relevant to point out that Csound supports three distinct
levels of user interaction (Fig. 1) [1, p.15]. While the top level may not involve
any form of programming, Csound users are mostly used to working at the middle
level, through developing instruments and user-defined opcodes (UDOs). At the
lowest level, it is possible to use deployment languages to embed or extend the
Csound system itself.

As noted earlier, Csound is highly extendable through

— Its own language: UDOs.

* The author would like to thank Michael Gogins for his work with LLVM JIT com-
pilation, which has provided the initial basis for this study.

2 Victor Lazzarini

Three levels
of interaction with the system

graphical plugin and app users

MIDDLE Csound language and extensions programming

LOW System and DSP development

Fig. 1. Three Levels of User Interaction.

— External languages, e.g. python and Faust
— C/C++ dynamic libraries (plugin opcodes)

This paper describes a new addition to these forms of system extension,
which leverages the low-level virtual machine (LLVM) compiler technology [2]
to provide a just-in-time (JIT) compilation mechanism to Csound. This can be
considered as a stand-alone project ready for deployment or as the first stage of
a more ambitious plan to deliver a JIT compiler for Csound UDOs.

2 Just-in-time Compilers

Compilers are software tools that translate code written in a given language into
another representation, which may be, for instance,

a DSP graph (as in the Csound compiler)
— an intermediate representation (IR)

— assembler code

binary (executable) code

depending on the compiler, the language, the target system, etc.

Normally, a compiler is invoked as a self-standing tool to build a piece of
software, usually in the form of binary executable code. Most software we use
are created in this way. This is done in advance of the target software being run
by a user.

A JIT compiler, on the other hand, produces a binary executable as the user
runs the software, slightly before a particular piece of code needs to be employed.
It is given code in some form and produces an executable that can immediately
be used.

A JIT Compiler for Csound 3

Similarly to a JIT compiler, a language interpreter can also take code and
run it immediately. However, such a software does not translate the code into a
binary executable form, but instead it runs pre-compiled commands defined by
the language in question.

There is a significant difference in performance: JIT-compiled code should run
very nearly or perhaps exactly as a natively compiled (ahead of time) binary.
It has the advantage of an interpreted code in that there is no build stage, the
code can be run directly as given.

The LLVM infrastructure provides support for the development of a JIT
compiler, which can take an input consisting of IR code and provide a binary
executable corresponding to it. In order to produce the IR, we can leverage the
Clang compiler tools, which can take C or C++ code as input. The combination
of these two toolchains allows us to put together an extension to Csound that
implements a JIT compiler.

3 A JIT Compiler for Csound

The most common way to extend Csound by the means of a binary executable is
to provide plugin opcodes in a dynamic load library (Fig. 2). Plugins are loaded
into the Csound engine when this is initialised by a host frontend, and are then
available for use in Csound code.

Csound Engine

CorC++ compiled into EEAAPREreY loaded into oncode
source code library P

Fig. 2. Plugin Opcodes.

With a JIT compiler, instead, we can send C or C++ code to be compiled
as required and it is immediately available for use (Fig. 3). The JIT compiler is
itself given as a dynamic library to Csound and is accessed via a set of opcodes.
The first one of these is the module compiler.

3.1 Module Compiler

There are two stages performed by the module compiler. The first one translates
C or C++ to LLVM IR (bitcode), using clang, and the second, the actual JIT
compiler, translates bitcode into an executable object inside Csound (Fig. 4).

A trivial example, amp, demonstrates its use. This is based on a C-language
opcode that changes the gain of an input signal. For this, we need three compo-
nents:

4 Victor Lazzarini

Csound Engine

C or C++ =
JIT compiler opcodes
source code

Fig. 3. JIT Compiler.

module compiler

clan JIT compiler

Fig. 4. Module Compiler.

1. The C source code for the opcode (passed as a text string)
2. The module compiler invocation, taking the source code.
3. The actual Csound code using the new opcode.

The C source for the amp opcode is given as a Csound string constant,

SCode = {{
#include <csdl.h>
typedef struct dataspace {
OPDS h;
MYFLT *out, *in, *gain;
} DATASPACE;

static int perf (CSOUND *csound, DATASPACE *p) {
MYFLT *out = p->out,*in = p->in, g = *p->gain;
uint32_t n, nsmps = CS_KSMPS;
for(n=0; n < nsmps; n++)
out[n] = in[n]l*g;
return 0K;

}

int module_init (CSOUND *csound) {
csound->AppendOpcode (csound, "amp" , sizeof (DATASPACE) ,0,2,
"a","ak", (SUBR) NULL, (SUBR) perf);
return 0K;

A JIT Compiler for Csound 5

¥
3}

The C module compiler opcode takes the C code and an entry point function
name as strings,

ires,ihandle c_module_compile SCode, "module_init"

Its first output contains the function return value. The second is a handle to an
executable object, which can be used to invoke code from the C module. The
module compiler is used with C or C++ code to provide binaries for execution.

After compilation, module_init() is run and the opcode amp is added to the
engine. We can now use it in an instrument,

SCscode = {{
instr 1
out (amp (oscili(0dbfs,A4)),0.5)
endin
3

ires = compilestr(SCscode)

since Csound is already running, we need to send the new code to be compiled
by the engine before it can be run.
We can also call any C or C++ module functions with the signatures,

int func(CSOUND *csound, OPDS h, MYFLT *out[], MYFLT *in[]);
extern "C" int
func (CSOUND *csound, const OPDS &h, MYFLT *out[], MYFLT *in[]);

at init aand/or perf-time using

// C (init)

irl[,ir2, ...] c_module_fcall ihandle,Sfuncl[,...]

// C++ (init)

ir1[,ir2, ...] cxx_module_fcall ihandle,Sfuncl[,...]
// C (perf)

xrl[,xr2, ...] c_module_fcallk ihandle,Sfuncl[,...]
// C++ (perf)

xri1[,xr2, ...] cxx_module_fcallk ihandle,Sfuncl[,...]

3.2 Compilation errors

As with any C/C++ code, we are always subject to coding errors and typos
that may result in a module that cannot be compiled. In this case, there is no
viable bitecode and an execution instance is not created. In that case, the opcode
compiler returns a non-zero code as its first argument, which should be checked
before any attempts to call the code. Additionally, a compilation error would

6 Victor Lazzarini

yield an invalid handle. Therefore any attempt to run the code would result in
either on an init error (in the case of function calls), or in the case of newly-
added opcodes, a Csound parser error as the opcode has not been successfully
added to the code.

Performance-time errors and segmentation faults, unfortunately, cannot be
satisfactorily protected against and may cause the Csound engine to crash. This
is of course the case for any C/C++ that is added to Csound in one way or
another, so there is nothing particularly special or surprising here.

3.3 C++ opcode objects

In addition to function calls, it is possible to construct and run C+-+ objects at
i, k, or a rates (or a combination of these). For these, the code needs to provide
a class implementing the opcode processing, and an entry function to instantiate
objects of this class

struct OpcodeObj : JITPlugin {

OpcodeObj (OPDS h) : JITPlugin(h) {}; // constructor
int init() { return OK; } // called at init-time
int perf() { return 0K; } // called at perf time
s

auto entry(OPDS h) {
return new OpcodeObj(h);
}

Once the object is defined in the C++ code it can be run by passing the
entry point name and the JIT handle to the appropriate cxx_opcode_[ik,ik,ia]
opcode,

// i-time only
ires[,...] cxx_opcode_i ihandle,Sentryl[,...]
// perf-time only ksig input/output
ksigl[,...] cxx_opcode_k ihandle,Sentryl[,...]
// perf-time only any type
xsigl,...] cxx_opcode_a ihandle,Sentryl[,...]
// i-time, perf-time i/k
k/ivar[,...] cxx_opcode_ik ihandle,Sentryl[,...]
// i-time, perf-time any
xvar[,...] cxx_opcode_ia ihandle,Sentryl[,...]

and since these opcodes are already in place in the system as part of the JIT
compiler plugin, there is no need to compile new Csound code to use them as in
the other example.

An opcode object version of the amp example looks like this

A JIT Compiler for Csound 7

Scode = {{
struct Amp : JITPlugin {
Amp(OPDS h) : JITPlugin(h) {};
int perf() {
for(int n = offset; n < nsmps; n++)
outargs(0) [n] = inargs(0) [n]*inargs[1];
return OK;
}
};
auto amp(OPDS h) { return new Amp(h)};
}}

gires,gihandle cxx_module_compile SCode

A running instance is obtained from the entry point factory amp. We pass
this to cxx_opcode_a, along with the audio and control signals

instr 1
out (cxx_opcode_a(gihandle, "amp",oscili(0dbfs,A4),0.5))
endin

Any number of distinct instances of amp can be run, just like any opcode in
the system.

3.4 Performance

But is this any good?

While the main aim of this project has not been to examine performance in
detail, it is worth looking at how the JIT code performs. A basic comparison
between an internal and a JIT-compiled should provide a general idea. For this
we can select one of the C++ class examples, for instance, the DelayLine, and
then compare it to an equivalent existing opcode, which in this case is comb.
We have also included in the test a UDO implementation of the same process.
This should be useful to demonstrate how useful the kinds of gains we should
expect once we are able to roll out the technology directly through Csound
programming, as outlined later in this paper.

The code for the DelayLine example is as follows:

SCode = {{
#include "../jitplugin.h"
#include <vector>

struct DelayLine : JITPlugin {
std::vector<MYFLT> delay;
std::vector<MYFLT>::iterator iter;

8 Victor Lazzarini

DelayLine(OPDS h) : JITPlugin(h), delay(0) { };

int init() {
if (inargs[1] > 10000)
return csound->init_error("delay time too long\\n");
delay.resize(csound->sr() * inargs[2]);
iter = delay.begin();
return 0K;

}

int perf() {
csnd: :AudioSig in(this, inargs(0));
csnd: :AudioSig out(this, outargs(0));

std: :transform(in.begin(), in.end(), out.begin(),
[this] (MYFLT s) {
MYFLT o *iter;
MYFLT g = inargs[1];
*iter = s + g*o;
if (++iter == delay.end())
iter = delay.begin();

return o;

b;

return 0K;

}
}s;

extern "C" {
auto delayline(OPDS h) {
return new DelayLine(h);
}
}
1

gires,gihandle cxx_module_compile SCode

instr 1

prints "\n***\nRunning JIT DelayLine C++ opcode\n***\n\n"
idt = 0.5

kg = 0.5

al diskin "fox.wav",1,0,1

a2 cxx_opcode_ia gihandle,"delayline",al,kg,idt

out a2x0.5

endin

The equivalent code using Csound code solely (opcode and UDO) is

A JIT Compiler for Csound 9

instr 2

prints "\n***\nRunning comb opcode\n**x*\n\n"
idt = 0.5

kg = 0.5

al diskin "fox.wav",1,0,1

a2 comb al,-3*idt/logl0(kg),0.5
out a2*0.5

endin

opcode Delayline,a,aki
ain, kg, idt xin

ids = idtx*sr

adel[] init ids

kp init O

aout init O

kn = 0

while kn < ksmps do
aout [kn] = adel [kp]
adel[kp] = ain[kn] + adel[kp]*kg
kp =kp !'=ids -1 7 kp+1 :0
kn += 1

od

xout aout

endop

instr 3

prints "\n***\nRunning DelayLine UDO\n***\n\n"
idt = 0.5

kg = 0.5

al diskin "fox.wav",1,0,1

a2 DelayLine al,kg,idt
out a2x0.5

endin

We have run these instruments separately for 100 seconds on a 2.9GHz Intel
Core 19 processor under MacOS 12.3.1, and averaged the CPU times for 10 runs.
Tests have shown that the CPU performance of the comb opcode and the JIT-
compiled DelayLine are very close, while the UDO is significantly slower. In this
particular case, it is even possible to say that the JIT-compiled C++ class has
the edge over the existing Csound opcode. Table 1 summarises the results.

10 Victor Lazzarini

Table 1. CPU timings reported for each one of the three comb filter instruments
running for 100 seconds.

instrument CPU time in seconds
instr 1 DelayLine 0.776
instr 2 comb 0.783
instr 3 UDO 1.86

4 The Direction of Travel

This project set out to investigate the feasibility of providing a JIT compiler
to allow Csound to be extended on-the-fly. It has demonstrated not only that
this is possible, but that it can actually be a means of providing fairly efficient
implementations of new DSP algorithms without the need to create external
dynamic libraries. This is ready to deployed as is, but it also completes the
first stage of a wider, more ambitious project, which is to allow users with no
knowledge of C or C++ to extend Csound natively.

The most common way for Csound users to extend the language is to create
new opcodes in the form of UDOs. This has a low entry requirement, as it uses
the Csound language itself as a means of programming. However, UDOs are as
efficient as any instrument code, which is slower than natively-compiled binaries
(as the Csound compiler is more akin to a language interpreter). If we can use a
JIT compiler for UDOs, then we should make these much more computationally
efficient.

Most of the components for this are already in place. The Csound parser can
produce an abstract syntax tree (AST) from a UDO. The module compiler can
take a C++ class and produce an instantiable binary (Fig 5). The missing piece
is an AST to C++ compiler, which can translate a UDO into a C++ class.

Module Compiler

JIT

clang compiler
- > » opcode

Fig. 5. An UDO Compiler.

5 Conclusions

Csound is a very powerful sound and music computing system, which runs ev-
erywhere.It is used in research and commercial applications by a world-wide

A JIT Compiler for Csound 11

user community. It is highly extensible through various languages.Its language
is easy to program in, posing only light demands on the user, with a gentle
learning curve.

The new LLVM/Clang module compiler [3] allows C/C++ code to be used
directly in Csound, embedded as strings in its orchestra. With it, it is possible
to add new natively-compiled opcodes to the system on-the-fly, without having
to compile and load external dynamic libraries. It is also possible to run C/C++
functions defined in the module, and instantiate and run C++ opcode classes
very efficiently. It provides an important stepping stone for the development of
a UDO compiler that will take Csound code and produce an executable binary.

References

1. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)
2. LLVM Project, http://1lvm.org
3. LLVM Project, https://github.com/vlazzarini/opcode_compiler

http://llvm.org
https://github.com/vlazzarini/opcode_compiler

	A Just-in-Time Compiler for Csound Opcodes
	Introduction
	Just-in-time Compilers
	A JIT Compiler for Csound
	Module Compiler
	Compilation errors
	C++ opcode objects
	Performance

	The Direction of Travel
	Conclusions

